

- 1. Find, with proof, all integers *n* such that $2^6 + 2^9 + 2^7$ is the square of an integer.
- 2. Find, with proof, all real numbers *a* such that $|x-1| |x-2| + |x-4| = a$ has exactly 3 solutions.
- 3. As Lisa hurried to copy down the last problem of her math homework assignment at the end of class, she got as far as

$$
0 = 9x^8 - 28x^6 -
$$

SOLUTIONS

- 1. If $m^2 = 2^6 + 2^9 + 2^1 = 576 + 2^1 = 24^2 + 2^1$, then $2^n = m^2 24^2 = (m-24)(m+24)$. Therefore, $m + 24$ and $m - 24$ must each be powers of 2. Let $m + 24 = 2^k$ and $m - 24 = 2^p$ where, $p < k$ and $p + k = n$. Then $2^{k} - 2^{p} = 48$ which implies 2^{p} divides 48, so that $p \le 4$. Trying $p = 0, 1, 2, 3, 4$ gives $p = 4$, $k = 6$ and $n = 10$ as the only possible value for n.
- 2. We begin by graphing the function $y = f(x) = |x-1| |x-2| + |x-4|$. If $x \le 1$, then $x - 1 \le 0$, $x - 2 \le 0$ and $x - 4 \le 0$, so we have

 $y = -(x - 1) + (x - 2) - (x - 4) = -x + 3.$

If $1 \le x \le 2$, then then $x - 1 \ge 0$, $x - 2 \le 0$ and $x - 4 \le 0$, so

$$
y = (x - 1) + (x - 2) - (x - 4) = x + 1.
$$

In the interval $2 \le x \le 4$ we have $x - 1 \ge 0$, $x - 2 \ge 0$ but $x - 4 \le 0$, so

$$
y = (x - 1) - (x - 2) - (x - 4) = -x + 5.
$$

Finally, for $x \ge 4$ we have

 $y = (x - 1) - (x - 2) + (x - 4) = x - 3.$

By piecing together the relevant parts of these four linear functions, we get the graph of the function $f(x)$ shown at the right.

Thus, for the original equation to have exactly three solutions, we have to choose a so that the horizontal line $y = a$ touches the graph of $f(x)$ at exactly three points. From the graph, this happens only for $a = 2$ and $a = 3$.

3. P(x) = $9x^8 - 28x^6 - ...$ Since the coefficient of x^7 is zero, the sum of the roots of $P(x) = 0$ is zero. Let the seven identical roots be a and the desired eighth root be b. Then 7a + b = 0 or b = -7a. Standardizing $P(x)$, the sum of the products of the roots taken two at a time is $-\frac{28}{9}$. Therefore, C² 7 $\frac{28}{9}$

4. a. Let the desired pair-squares t be $\{2012, a, b\}$. Since $2012 + 13 = 2025 = 45^2$, try $a = 13$ as a second member of the set. Then

 $2012 + b = x^2$ and $13 + b = y^2$ for some integers x and y.

Subtracting these two equations gives $1999 = x^2 - y^2 = (x + y)(x - y)$. Since 1999 is a prime number, $x + y = 1999$ and $x - y = 1$. From these two equations we obtain $x = 1000$. Then $b = 1000^2 - 2012 = 1000000 - 2012 = 997988$. Thus, one desired pair-squareset of size 3 is {13, 2012, 997988}.

(Note: {292, 2012, 45077} and {488, 2012, 143912} also work. There are others.)

b. Every integer has one of the four forms $4k$; $4k + 1$; $4k + 2$ and $4k + 3$ for integers k.

First we prove that the square of an integer must have one of the forms $4n \cdot 4n + 1$.

Proof:

- (i) $(4k)^2 = 4(4k^2) = 4n$
- (ii) $(4k+1)^2 = 16k^2 + 8k + 1 = 4(4k + 2k) + 1 = 4n+1$
- (iii) $(4k+2)^2 = 16k^2 + 16k+4 = 4(4k^2 + 4k+1) = 4n$
- (iv) $(4k+3)^2 = 16k^2 + 24k+9 = 4(4k^2 + 6k+2) + 1 = 4n+1$

Therefore, the square of an integer must have one of the forms $4n \cdot 4n + 1$.

Let S be a pair-square set of size 3. Suppose that the set S contains the two odd numbers a and b. Since $a + b$ is an even square, it must have form 4n, and therefore a and b cannot both have form $4k + 1$, nor can they both have form $4k + 3$. It follows that we can write $a = 4k + 1$ and $b = 4k + 3$.

We derive a contradiction by showing that there is no possibility for the third member z of S. Indeed, if z has form $\&$ or $4k + 3$, then $z + b$ is not a square, and if z has form $4k + 4b$ is Td (k) Tj /b Td (.-8.93 -1.10 Td (a) Tj /TT0 1 Tf $[(+)4()$]TJ2(4)4TJ -0.) 5. It is easy to show that ∆ADP is isosceles (note the marked congruent angles).

> Thus $DP = 2012$ and all we need is the length of PC. Since ∆ADP and ∆CBQ are congruent isosceles triangles, ∠PAB \cong ∠DAP \cong ∠CQB, making \overline{AP} parallel to \overline{QC} . Similarly, the other two angle bisectors are parallel, making EFGH a parallelogram.

Since ∠DAB and ∠ADC are supplementary, m∠DAB + m∠ADC = 180.

S\w